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Abstract
A procedure for calculating the (auto)correlation function γf (k), k ∈ Z

m, of an
m-dimensional complex-valued automatic sequence f : Z

m → C, is presented.
This is done by deriving a recursion for the vector correlation function �ker(f )(k)

whose components are the (cross)correlation functions between all sequences
in the finite set ker(f ), the so-called kernel of f which contains all properly
defined decimations of f . The existence of �ker(f )(k), which is defined as a
limit, for all k ∈ Z

m, is shown to depend only on the existence of �ker(f )(0).
This is illustrated for the higher-dimensional Thue–Morse, paper folding and
Rudin–Shapiro sequences.

PACS numbers: 61.44.Br, 61.50.Ah, 89.75.Kd
Mathematics Subject Classification: 11B85, 62M15, 82D25

1. Introduction and preliminaries

Automatic sequences f : Z
m → C, where C denotes the complex numbers, are characterized

by the fact that they have a finite number of properly defined decimations. Equivalently, they
are generated by a fixed point of a certain substitution system, or by a particular finite automaton
(see [1], [2], and the extended list of references therein). In [3], we discussed the conditions
under which automatic sets (a particular form of automatic sequences) are Delone sets. The
diffraction spectrum of Delone sets is typically a mixture of a pure point spectrum (typical
for quasi-periodic sets) and a continuous spectrum (either absolute or singular continuous),
and is given by the Fourier transform of the (auto)correlation function of the underlying set.
The spectral properties thus depend on this correlation function, and hence knowledge of the
correlation function is a first step towards characterizing the spectrum, see e.g., [4] and [5] for
further details.

0305-4470/04/4510879+20$30.00 © 2004 IOP Publishing Ltd Printed in the UK 10879
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For a complex-valued sequence f : Z
m → C, the (auto)correlation function is usually

defined, provided the limit exists, as

γff (k) = lim
R→∞

1

vol(BR(0))

∑
x∈BR(0)∩Z

m

f (x)f (x + k),

for all k ∈ Z
m, where BR(0) is a ball of radius R in R

m (in a proper norm) and f denotes
the complex conjugate of f . Correlation and spectral properties of special one-dimensional
automatic sequences (over N) such as the Thue–Morse, paper folding and Rudin–Shapiro
sequences have been studied in part IV of [6], where also further references can be found. Since
one-dimensional automatic sequences can also be considered as generated by a substitution of
constant length, the book [7] provides a further source of information on spectral properties
of sequences. Correlation and spectral properties of a certain class of higher dimensional
substitution sequences are studied in [8, 9].

In this paper, we present a procedure for calculating the correlation function γff (k),

k ∈ Z
m of an m-dimensional complex-valued H-automatic sequence f : Z

m → C, where H
is a proper expanding integer matrix for which a digit set W exists such that (H,W) defines
a numbering system for Z

m [2, 3]. This is done by deriving a recursion for the whole set of
correlation functions

γgh(k) = lim
R→∞

1

vol(BR(0))

∑
x∈BR(0)∩Z

m

g(x)h(x + k),

where g, h ∈ ker(f ), and ker(f ) is the finite set of all properly defined decimations
of f . Roughly speaking (and omitting some technical details at this stage) the main result,
theorem 3.4, states the following: if γgh(0) exists for all g, h ∈ ker(f ), then f has a unique
correlation function. Actually, we shall establish a more general result by showing that the
correlations exist and are unchanged if BR(0) is replaced by a cylinder all axes of which go
simultaneously and independently to infinity.

In the rest of this section, we recall the essentials about H-automatic sequences that are
necessary for our purposes. For a more extended and more general treatment, see [2]. Section 2
deals with properties of shifts and products of automatic sequences. In section 3, the main
result concerning the existence and calculation of correlation functions is derived. This result
is given in terms of the characteristics of the graph describing the underlying automaton
that generates the sequence, and complements conditions for the existence of correlation
functions in terms of substitutions, cf [8, 9]. The result is illustrated for a whole class of
higher-dimensional Thue–Morse, paper folding and Rudin–Shapiro sequences. A follow-up
paper will deal with the correlation and spectral properties for these particular sequences.
These sequences are straightforward generalizations, as described in [3], of the corresponding
original one-dimensional 2-automatic sequences on N (see a.o. [6]) by considering the same
automaton but using binary numbering systems in Z

d instead of in N. They differ from other
kinds of generalizations in higher dimensions which are obtained from substitutions in N

d

([8, 9]) or from products of one-dimensional sequences (see e.g. [10]). In the appendices, we
collect some technical results necessary for the proof of the main theorem.

The definition of H-automatic sequences defined on Z
m requires an expanding integer

matrix H ∈ Z
m×m (expanding means that all eigenvalues have absolute value greater than 1).

According to [11], then there exists a norm ‖‖ and a c > 0 such that

‖Hx‖ � c‖x‖ for all x ∈ Z
m. (1)
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Moreover, a complete residue set W for H is needed: this is a set W = {w0 =
0, w1, . . . , w|det(H)|−1} ∈ Z

m such that for every x ∈ Z
m there exist unique ζ(x) ∈ W

and κ(x) ∈ Z
m such that

x = Hκ(x) + ζ(x). (2)

A complete residue set is called complete digit set if for every x ∈ Z
m there exists n = n(x) ∈ N

such that κn(x) = 0.
This is equivalent to: every x ∈ Z

m\{0} has a finite (H,W)-representation, i.e., for every
x ∈ Z

m\{0} there exist unique ωi ∈ W, i = 1, . . . , n such that

x = Hn−1ωn + Hn−2ωn−1 + · · · + Hω2 + ω1,

and ωn �= 0. From now on, we always assume that W is a complete digit set of H. The
existence of complete digit sets for a given H is a difficult question; partial answers and related
literature can be found in [12].

An m-dimensional sequence f is defined as a map f : Z
m → C. The (H,w)-decimation

of f , with w ∈ W , is defined as the sequence ∂w(f ) satisfying

∂w(f )(x) = f (Hx + w). (3)

The maps ∂w : C
Z

m → C
Z

m

, w ∈ W , are called decimations. Repeated application of
decimations to a sequence f is written as

∂ωn
◦ ∂ωn−1 · · · ◦ ∂ω1(f )(x) = f (Hnx + Hn−1ωn + Hn−2ωn−1 + · · · + ω1).

The set of all decimations of f together with f forms the (H,W)-kernel of f :

ker(H,W)(f ) = {f } ∪ {
∂ωn

◦ ∂ωn−1 · · · ◦ ∂ω0(f )
∣∣ n ∈ N, ωi ∈ W, i = 0, . . . , n

}
.

We simply write ker(f ) if H and W are clear from the context.

Definition 1.1. The sequence f ∈ C
Z

m

is called (H,W)-automatic if ker(f ) is finite.

According to theorem 3.2.2 in [2], the automaticity does not depend on the choice of the
residue set W . It is therefore justified to speak of an H-automatic sequence.

We now recall the fact that an automatic sequence f is also related to a fixed point of a
substitution map �f defined on the vector sequence F : Z

m → C
ker(f ) (components labelled

by the elements of ker(f )). To this end, we have to define decimation matrices for a finite
decimation invariant set K ⊂ C

Z
m

. This is a set K satisfying

∂w(K) = {∂w(g) | g ∈ K} ⊆ K

for all w ∈ W . The decimation matrices for a decimation invariant set K are matrices
A[K]

w = (
aw

g,h

) ∈ {0, 1}K×K,w ∈ W , defined by

aw
g,h =

{
1 if ∂w(g) = h

0 otherwise.

Note that decimation matrices have precisely a single 1 in each row. As a consequence,
products and sums of decimation matrices are nonnegative matrices such that every row
contains at least one positive entry. Clearly, if matrices of this type are multiplied by positive
constants, this property remains. This simple observation will be of crucial importance later
on.

The decimation matrices of ker(f ), which is by definition decimation invariant, will be
denoted by Aw or A

f
w instead of A

[ker(f )]
w if the context is clear.
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Figure 1. A kernel graph.

The substitution map �f transforms the sequence F : Z
m → C

ker(f ) into the sequence
�f (F) : Z

m → C
ker(f ) by putting

�f (F)(Hx + w) = AwF(x) (4)

for all w ∈ W and x ∈ Z
m. Then the sequence F : Z

m → C
ker(f ) defined as

F(x) = (g(x))g∈ker(f )

for x ∈ Z
m is a fixed point of the substitution �f , i.e., �f (F) = F , see e.g., [2].

As a consequence of (4), if x = ∑n
j=1 Hj−1ωj is the unique (H,W)-representation of

x ∈ Z
m\{0}, then

F(x) = Aω1Aω2 . . . Aωn
F(0). (5)

This implies that F(0) = A0F(0). The decimation matrices Aw,w ∈ W also define a directed
graph, the kernel graph, where the vertices correspond to the elements of ker(f ), and where a
vertex g ∈ ker(f ) is connected to a vertex h ∈ ker(f ) by a directed edge with label w, if and
only if h = ∂w(g), i.e., if aw

g,h = 1.
For example, assume that f is an automatic (H, {0, w})-sequence, with ker(f ) = {f, g, h}

and decimation matrices

A0 =

0 1 0

0 1 0
0 0 1


 Aw =


1 0 0

0 0 1
0 1 0


 ,

where the rows and columns of the matrices correspond to the elements f, g, h, in that order.
The kernel graph associated with A0, Aw is given in figure 1.

A kernel graph can be interpreted as a finite automaton that generates the sequence f ,
see e.g., [2]. The idea of generating a sequence is as follows: if x ∈ Z

m, x �= 0, has the
(H,W)-representation

x =
n∑

j=1

Hj−1ωj ,

then x defines a path in the directed graph. The path begins in f , follows the arrows labelled
ω1, ω2, . . . , ωn and terminates in an element g ∈ ker(f ). Then the value of f at x is equal to
the value of g at 0, i.e., f (x) = g(0).

Due to this interpretation, one immediately sees that an H-automatic sequence has only
finitely many values, i.e., the set {f (k) | k ∈ Z

m} is finite.

2. Shifts and products of complex-valued automatic sequences

We will ultimately deal with convolutions of automatic sequences f ∈ C
Z

m

, which involve
shifts, products and sums of sequences.

First we begin with the shift of a sequence f . For k ∈ Z
m, the shift map σk : C

Z
m → C

Z
m

is defined as

σk(f )(x) = f (x + k).
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By theorem 3.2.5 in [2], H-automaticity of f implies H-automaticity of σk(f ). We state the
following relationship for decimations of a shift of a sequence:

Lemma 2.1.

∂w ◦ σk = σκ(w+k) ◦ ∂ζ(w+k). (6)

Proof. Let g(x) = σk(f )(x) = f (x + k). Then, by invoking (3), we get (∂w ◦ σk)(f )(y) =
∂w(g)(y) = g(Hy + w) = f (Hy + w + k) = f (H(y + κ(w + k)) + ζ(w + k)) =
∂ζ(w+k)(f )(y + κ(w + k)) = σκ(w+k)(∂ζ(w+k)(f ))(y). �

As a next step, we recall the notion of Kronecker (tensor, direct) product of matrices and
vectors, but slightly adapted to our purposes.

Let f and g be automatic sequences with respective kernels ker(f ) and ker(g). If
A ∈ C

ker(f )×ker(f ) and B ∈ C
ker(g)×ker(g) are matrices, then the matrix A ⊗ B is an element of

C
(ker(f )×ker(g))×(ker(f )×ker(g)) defined as

(A ⊗ B)((f1, g1), (f2, g2)) = A(f1, f2)B(g1, g2).

Note further that, if F ∈ C
ker(f ) and G ∈ C

ker(g) are vectors, then the vector F ⊗ G ∈
C

(ker(f )×ker(g)), i.e., a vector whose components are labelled by the elements of ker(f ) × ker(g),
is defined as

(F ⊗ G)(f1, g1) = F(f1)G(g1).

And with this, one has that the product of the matrix A⊗B with the vector F ⊗G is the vector

(A ⊗ B)(F ⊗ G) = (AF) ⊗ (BG),

where AF is the usual product of a ker(f ) × ker(f )-matrix with a ker(f )-vector (similar
for BG).

For the automatic sequences f, g ∈ C
Z

m

, we define the vector sequence F ⊗ G : Z
m →

C
(ker(f )×ker(g)) by setting

(F ⊗ G)(x)(f1, g1) = f1(x)g1(x), (7)

where f1 ∈ ker(f ), g1 ∈ ker(g) and x ∈ Z
m. Moreover, for matrices A ∈ C

ker(f )×ker(f ), B ∈
C

ker(g)×ker(g) we define the vector sequence (A ⊗ B)(F ⊗ G) : Z
m → C

(ker(f )×ker(g)) by

(A ⊗ B)(F ⊗ G)(x) = (AF(x)) ⊗ (BG(x)), (8)

where AF(x) and BG(x) are the usual matrix-vector products.
Let f and g ∈ C

Z
m

be H-automatic sequences, then the set ker(f )× ker(g) is decimation
invariant, where the decimations of (φ,ψ) ∈ ker(f )×ker(g) are defined componentwise, i.e.,
∂w(φ,ψ) = (∂w(φ), ∂w(ψ)). It is therefore meaningful to consider the decimation matrices
of the decimation invariant set ker(f ) × ker(g).

Lemma 2.2. If f and g are H-automatic sequences, then

A[ker(f )×ker(g)]
w = A[ker(f )]

w ⊗ A[ker(g)]
w

for all w ∈ W .

Proof. By the definition of the tensor product(
Af

w ⊗ Ag
w

)
((f1, g1), (f2, g2)) = Af

w(f1, f2)A
g
w(g1, g2)

is equal to 1 if and only if A
f
w(f1, f2) = 1 and A

g
w(g1, g2) = 1. On the other hand, by the

definition of the decimation matrix

A[ker(f )×ker(g)]
w ((f1, g1), (f2, g2)) = 1
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if and only if ∂w(f1) = f2 and ∂w(g1) = g2, which is equivalent to A
f
w(f1, f2) = 1 and

A
g
w(g1, g2) = 1. This completes the proof. �

If ρ : C × C → C is any map and if f and g are H-automatic sequences, then h : Z
m → C

defined as h(x) = ρ(f (x), g(x)) is H-automatic. Indeed, ∂w(h)(x) = h(Hx + w) =
ρ(f (Hx + w), g(Hx + w)) = ρ(∂w(f )(x), ∂w(g)(x)). Then the decimation matrices Ah

w

are submatrices of the matrices A
[ker(f )×ker(g)]
w .

Example

(i) Consider h = ρ(f, f ), then the decimation matrices Ah
w are the submatrices of

A
[ker(f )×ker(f )]
w formed by the entries ((f1, f1), (f2, f2)). Except for the labelling of

the entries, this matrix is identical to A
[ker(f )]
w itself.

(ii) Consider the so-called two-dimensional Thue–Morse sequence t and the paper folding
sequence p as introduced in [3]. These sequences are H-automatic sequences w.r.t. some
proper H. For a complete digit set W = {0, w}, the respective decimation matrices are
given as

At
0 =

(
1 0
0 1

)
At

w =
(

0 1
1 0

)
.

A
p

0 =




0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1


 Ap

w =




1 0 0 0
0 0 0 1
0 0 1 0
0 0 0 1


 .

Then h(x) = t (x) + p(x) is H-automatic, and one computes that indeed

Ah
v = At

v ⊗ Ap
v for v = 0, w1.

Another consequence of lemma 2.2 in combination with equations (7) and (8) is the following
relation:

(F ⊗ G)(Hx + w) = (
Af

w ⊗ Ag
w

)
((F ⊗ G)(x)). (9)

3. Convolutions and correlation functions

From now on, we suppose that the expanding matrix H satisfies an additional condition: there
exists a matrix P ∈ R

m×m such that P −1HP is an m × m block-diagonal matrix

� = diag(λ1, λ2, . . . , λs,�1,�2, . . . , �t ), (10)

where the λj , |λj | > 1, correspond to the real eigenvalues of H, and the �j are 2 × 2-matrices
of the form

�j =
(

aj −bj

bj aj

)
, (11)

where aj , bj ∈ R and |det(�j )| = a2
j + b2

j > 1. �j corresponds to a pair of complex
eigenvalues (aj ± bj i) of H.

If the elements of R
m are denoted as x = (z1, . . . , zs, x1, y1, x2, y2, . . . , xt , yt ), then it is

easy to see that

‖x‖∞ = max
{
max{|zi | | i = 1, . . . , s}, max

{√
x2

i + y2
i

∣∣ i = 1, . . . , t
}}
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defines a norm on R
m. Moreover, the map � : R

m → R
m is expanding w.r.t. this norm. Then

H : R
m → R

m is expanding w.r.t. the norm

‖x‖H = ‖P −1x‖∞. (12)

The balls BR(0) appearing in the definition of the correlation function in the introduction
are considered with respect to this norm. They actually correspond to the cylinders
PC(R,R, . . . , R) defined in appendix B, equation (B.1).

However, for computing the correlations, we will even consider cylinders C(R) =
C(R1, R2, . . . , Rs+t ) with possibly different sizes Ri in each ‘direction’. The reason for this is
that it allows us to formulate the next theorem, which is crucial for the further development.
If f and g are H-automatic, then the convolution of f and g (of size R) is the sequence
cR : Z

m → C defined as

cR(f, g)(k) =
∑

x∈PC(R)∩Z
m

f (x)g(x + k) =
∑

x∈PC(R)∩Z
m

(f σk(g))(x),

where g denotes the complex conjugate. We consider the set of all convolutions between the
kernel elements of f and g, i.e., all sequences cR(φ,ψ) with φ ∈ ker(f ) and ψ ∈ ker(g).
Using the tensor product, we can write the total of these sequences as a (ker(f ) × ker(g))-
vector

CR(F,G)(k) =
∑

x∈PC(R)∩Z
m

(F ⊗ σk(G))(x). (13)

The next theorem provides a kind of recursive relation for the convolutions which is a
preform of the recursion involving the correlations.

Theorem 3.1. Let f, g ∈ C
Z

m

be H-automatic and R/c and oC(R) be as defined in appendix B
equation (B.4), then

CR(F,G)(Hk + w) =
∑
v∈W

(
Af

v ⊗ A
g

ζ(w+v)

)
CR/c(F,G)(k + κ(w + v)) + oC(R) (14)

holds for all w ∈ W and all k ∈ Z
m.

Proof. We have by equation (13) and by lemma 3.10

CR(F,G)(Hk + w) =
∑

x∈PC(R)∩Z
m

(F ⊗ σHk+w(G))(x)

=
∑
v∈W

∑
x∈PC(R/c)∩Z

m

(F ⊗ σHk+w(G))(Hx + v) + oC(R)

which is, due to equations (6) and (9), the same as∑
v∈W

∑
x∈PC(R/c)∩Z

m

(
Af

v ⊗ A
g

ζ(w+v)

)
(F ⊗ σk+κ(w+v)(G))(x) + oC(R)

and which, by equation (13), yields the desired expression (14).∑
v∈W

(
Af

v ⊗ A
g

ζ(w+v)

)
CR/c(F,G)(k + κ(w + v)) + oC(R). �

From now on we restrict our attention to the ‘(auto)convolution’ case f = g and write CR(k)

instead of CR(F,F)(k). Note, for later reference, that if k = 0 and w = 0, equation (14) for
f = g reads

CR(0) =
(∑

v∈W

Av ⊗ Av

)
CR/c(0) + oC(R). (15)
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The next lemma presents some consequences of the simple observation that decimation
matrices have precisely a single 1 in every row. These will be important later.

Lemma 3.2. Let f ∈ C
Z

m

be H-automatic with decimation matrices Av, v ∈ W .

(i) For all g ∈ ker(f )∑
h∈ker(f )

∑
v∈W

Av(g, h) = |det(H)| .

(ii) Let ξ : W → W be any map. For all (g1, g2) ∈ ker(f ) × ker(f ) and all v ∈ W∑
h1,h2∈ker(f )

∑
v∈W

(Av ⊗ Aξ(v))((g1, g2), (h1, h2)) = |det(H)| .

Proof.

Ad (i). Follows from the fact that every row of Av contains a single 1 and that
|W | = |det(H)|.
Ad (ii). By definition∑
h1,h2∈ker(f )

∑
v∈W

(Av ⊗ Aξ(v))((g1, g2), (h1, h2)) =
∑

h1,h2∈ker(f )

∑
v∈W

Av(g1, h1)Aξ(v)(g2, h2),

which is the same as

∑
h1∈ker(f )

∑
v∈W

Av(g1, h1)


 ∑

h2∈ker(f )

Aξ(v)(g2, h2)


 .

Since Aξ(v) is a decimation matrix, the sum over h2 is equal to 1, and this reduces the sum
to ∑

h1∈ker(f )

∑
v∈W

Av(g1, h1),

which is equal to |det(H)|, by (i). �

Instead of the convolution sequence CR(k), we now consider the scaled sequence

�R(k) = 1

vol(PC(R))
CR(k),

the limit of which, for R ⇒ ∞ (meaning that all components Ri of R go simultaneously to
∞), if it exists, will give the correlation �(k), a (ker(f ) × ker(f ))-vector with components
γgh(k), where g, h ∈ ker(f ). Note that, due to equation (B.2), we have

vol(C(R)) = |det(H)| vol(C(R/c)) (16)

and therefore the rescaled version of theorem 3.1 reads

�R(Hk + w) = 1

|det(H)|
∑
v∈W

(Av ⊗ Aζ(w+v))�R/c(k + κ(w + v)) +
oC(R)

vol(C(R))
. (17)

From now on, the rightmost term in the above expression will be written as ε(R). By definition
(see appendix B, equation (B.4)), limR⇒∞ ε(R) = 0. Under the assumption that the limits
�(k), k ∈ Z

m, exist, equation (17) reads

�(Hk + w) = 1

|det(H)|
∑
v∈W

(Av ⊗ Aζ(w+v))�(k + κ(w + v)). (18)
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Particular case. If |det(H)| = 2 and if W = {0, w} denotes a complete digit set of H, then
equation (18) reads

�(Hk) = 1
2 (A0 ⊗ A0 + Aw ⊗ Aw)�(k) (19)

�(Hk + w) = 1
2 (A0 ⊗ Aw)�(k) + 1

2 (Aw ⊗ A0)�(k + ŵ), (20)

where ŵ = H−1(2w).
If, in equation (18), Hk + w is replaced by k, this formula transforms into

�(k) = 1

|det(H)|
∑
v∈W

(Av ⊗ Aζ(ζ(k)+v))�(κ(k) + κ(ζ(k) + v)). (21)

Let us assume for the moment that the limits �(k) exist for all k ∈ Br(0) ∩ Z
m and for

r sufficiently large, where Br(0) is defined for a norm for which H is expanding and not
necessarily the norm defined in (12). The latter norm is only necessary in the determination
of the correlations as limits. Then equation (18) provides a recursive method to compute �(k)

for k ∈ Z
m outside Br(0). The following lemma provides a lower bound for the radius r, in

the sense that a knowledge of �(k), ‖k‖ � r∗, already determines the remaining values of �.

Lemma 3.3. Let H be an expanding matrix with expansion constant c (see (1)), W be
a related complete digit set with corresponding κ and ζ -maps (see equation (2)). Let
α = max{‖κ(v1 + v2)‖ | v1, v2 ∈ W }, β = max{‖v‖ | v ∈ W } and

r∗ = β + cα

c − 1
. (22)

(i) If k ∈ Z
m is such that ‖k‖ > r∗, then

‖κ(k) + κ(ζ(k) + v)‖ < ‖k‖
for all v ∈ V .

(ii) If k is such that ‖k‖ � r∗, then

‖κ(k) + κ(ζ(k) + v)‖ � r∗

for all v ∈ V .

Proof. Set fv(k) = κ(k) + κ(ζ(k) + v) for v ∈ W and k ∈ Z
m, then

‖fv(k)‖ � ‖κ(k)‖ + α,

where α = max{‖κ(v1 + v2)‖ | v1, v2 ∈ W }. Now note that

‖k − ζ(k)‖ = ‖Hκ(k)‖ � c‖κ(k)‖.
This gives

‖κ(k)‖ � ‖k‖ + β

c

for β = max{‖v‖ | v ∈ W } and therefore

‖fv(k)‖ � ‖k‖ + β + cα

c
.

Using (22), one obtains that ‖fv(k)‖ < ‖k‖ if ‖k‖ > r∗ and ‖fv(k)‖ � r∗ if k � r∗. �

In other words, referring to the recursion (21), knowledge of �(κ(k) + κ(ζ(k) + v)), v ∈ W ,
allows a computation of �(k). Indeed, if ‖k‖ > r∗, then ‖κ(k) + κ(ζ(k) + v)‖ < ‖k‖ for all
v ∈ W . Therefore, a knowledge of �(k) for k ∈ Br∗(0) is sufficient to compute �(k) for the
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remaining values of k outside Br∗(0). It follows of course that the mere existence of �(k) in
Br∗(0) implies the existence of �(k) for all k ∈ Z

m. However, we will now demonstrate that
the existence of all �(k) only depends on the existence of �(0).

Theorem 3.4. If �(0) = limR⇒∞ �R(0) exists, then

�(k) = lim
R⇒∞

�R(k)

exists for all k ∈ Z
m.

Proof. Let U = Br∗(0) ∩ Z
m, where r∗ is given by equation (22). The collection of vectors

�R(k) with k ∈ U is considered as a (U × (ker(f ) × ker(f )))-vector written as �R , i.e.,
�R(k, g1, g2) is the value of the (ker(f ) × ker(f ))-vector �R(k) at the entry (g1, g2).

Due to equation (17) and lemma 3.3, there exists a matrix

B ∈ C
(U×(ker(f )×ker(f )))×(U×(ker(f )×ker(f )))

such that for the vector �R the equation

�R = B�R/c + ε(R) (23)

holds. To emphasize the role of the component �R(0) of �R , we write �R = (�∗
R, �R(0)),

where �∗
R is considered as a (U ∗ × (ker(f ) × ker(f )))-vector with U ∗ = U\{0}.

Since, according to (21),

�R(0) = 1

|det(H)|

(∑
v∈V

Av ⊗ Av

)
�R/c(0) + ε(R),

one can write equation (23) as(
(�R(u))u∈U∗

�R(0)

)
=

(
B̃ C

0 A

) (
(�R/c(u))u∈U∗

�R/c(0)

)
+ ε(R), (24)

where A = 1
|det(H)|

(∑
v∈V Av ⊗ Av

)
and with proper matrices B̃, C.

Due to the existence of �(0), one has that �R(0) = �(0) + δ(R) with limR⇒∞ δ(R) = 0.
This gives the equation

(�R(u))u∈U∗ = B̃(�R/c(u))u∈U∗ + C�(0) + Cδ(R/c) + ε(R). (25)

The proof is complete if theorem 3.7 of appendix A is applicable. To this end, and referring
to appendix A, the Banach space X is considered to be the vector space C

U∗
, the function

f : R
N
�0 → X is given as f(R) = (�R(u))u∈U∗ , which is by its definition bounded on bounded

sets. The map A : X → X from appendix A is then given as

Ax = B̃x + C�(0),

and the error term figuring in equation (A.1) corresponds to Cδ(R/c) + ε(R). In other words,
if one can show that the map A is a contraction, which is implied by the contraction property
of matrix B̃ , then the limit limR⇒∞(�R(u))u∈U∗ does exist. To investigate the contraction of
B̃, we first analyse the structure of the matrix B.

Equation (17) with Hk + w replaced by k transforms into

�R(k) = 1

|det(H)|
∑
v∈W

(Av ⊗ Aζ(ζ(k)+v))�R/c(κ(k) + κ(ζ(k) + v) + ε(R). (26)

For k ∈ U we set

M(k) = {κ(k) + κ(ζ(k) + v) | v ∈ W },
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i.e., M(k) is the set of all those arguments j for �R/c(j) that are needed to determine �R(k)

in equation (26). Due to lemma 3.3, one has that M(k) ⊆ U for all k ∈ U . Furthermore, for
k ∈ U and l ∈ M(k) we set

�(k, l) = {v | l = κ(k) + κ(ζ(k) + v), v ∈ W }.
If one associates with k ∈ U the vector space Vk = C

ker(f )×ker(f ), which is the vector space
where the vectors �R(k) belong to, then one sees that equation (26) induces a linear map Ak,l

(different from zero) from Vl to Vk if and only if l ∈ M(k). Moreover, the matrix of this linear
map is given as

Ak,l = 1

|det(H)|
∑

v∈�(k,l)

Av ⊗ Aζ(ζ(k)+v)), (27)

which is a nonnegative matrix with at least one positive entry in every row. For reasons of
convenience, we set Ak,l = 0 if l �∈ M(k). The relation l ∈ M(k) is encoded in a matrix
G = (gk,l)k,l∈U ∈ {0, 1}U×U by defining

gk,l =
{

1 if l ∈ M(k)

0 otherwise.

Then G can be considered as the adjacency matrix of the directed graph with vertices U and a
directed edge from l to k if and only if l ∈ M(k).

This shows that the matrix B can be considered as a U ×U block matrix having the matrix
Ak,l as entry at the position k, l. I.e., B is a (U ×ker(f ) ker(f ))× (U ×ker(f ) ker(f ))-matrix
with

B((k, g1, g2), (l, h1, h2)) = Ak,l((g1, g2), (h1, h2)). (28)

In particular, the entries of B are nonnegative and bounded by 1, because of (27) combined
with lemma 3.2 (ii). Moreover, one has∑

(l,h1,h2)∈U×ker(f )×ker(f )

B((k, g1, g2), (l, h1, h2)) = 1

for all (k, g1, g2) ∈ U × ker(f ) × ker(f ). The proof of this equality is as follows: by
equation (28) the above sum is equal to∑
(l,h1,h2)∈U×ker(f )×ker(f )

Ak,l((g1, g2), (h1, h2)) =
∑

l∈M(k),h1,h2∈ker(f )

Ak,l((g1, g2), (h1, h2)),

since all Ak,l �= 0 if and only if l ∈ M(k). According to equation (27) this can be written as

1

|det(H)|
∑

h1,h2∈ker(f )

∑
l∈M(k)

∑
v∈�(k,l)

(Av ⊗ Aζ(ζ(k)+v))((g1, g2), (h1, h2)).

Since for every v ∈ W there exists an l ∈ M(k), the sums over l ∈ M(k) and v ∈ �(k, l) can
be replaced by the sum over v ∈ W , this gives

1

|det(H)|
∑

h1,h2∈ker(f )

∑
v∈W

(Av ⊗ Aζ(ζ(k)+v))((g1, g2), (h1, h2)),

and the assertion follows from lemma 3.2 (ii). In other words, if one thinks of B as a (large)
matrix, then the sum over every row is equal to 1. Therefore, every power of B has the same
property.

Since B has the above-mentioned blockstructure with blocks Ak,l one has for Bn at position
(k, l) ∈ U × U the block

Bn(k, l) =
∑

x1,...,xn−1∈U

Ak,x1Ax1,x2Ax2,x3 . . . Axn−1,l .
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Now note that since the matrices Ak,l are either zero or have at least one positive element in
each row, their products are also either zero or have at least one positive element in each row.

Using the interpretation of G as adjacency matrix of the above-mentioned directed graph,
we can say that Bn(k, l) = 0 if and only if there is no directed path of length n from l to k
in this directed graph. Indeed, if there is no directed path, then all products in the above sum
are zero, and if there is a directed path of length n, then at least one product is different from
zero. Moreover, this product contains in each row at least one positive entry, and in particular
Bn(k, l) has in each row a positive entry, if there exists a path of length n from l to k.

Now let k ∈ U ∗, then one has κ(k) ∈ M(k). Since W is a complete digit set, it follows
that there exists an n0 ∈ N such that κn0(k) = 0 for all k ∈ U ∗. This shows that for every
k ∈ U ∗ there exists a path of length n0 from 0 to k, and therefore that the matrix Bn0(k, 0) has
for every k ∈ U ∗ a positive entry in every row.

Iterating equation (24), one obtains(
(�R(u))u∈U∗

�R(0)

)
=

(
B̃n0 Cn0

0 An0

) (
(�R/cn0 (u))u∈U∗

�R/cn0 (0)

)
+ εn0(R).

As we have seen, the row sum of every row of Bn0 is equal to 1. Since the columns formed
by Cn0 correspond to the matrices Bn0(k, 0) which contain at least one positive entry in each
row, it follows that the row sum of every row of B̃n0 , which has nonnegative entries, is strictly
less than 1. Therefore, the eigenvalues of B̃n0 have modulus less than 1. This implies that
the eigenvalues of B̃ have modulus less than 1. In other words, B̃ is a contraction, and
equation (25), with lim ε(R) + Cδ(R/c) = 0 satisfies the assumptions of theorem 3.7. This
implies that (�(u))u∈U∗ = limR⇒∞(�R/cn0 (u))u∈U∗ exists. �

As theorem 3.7 applies to the recursion equation (25), one has

Corollary 3.5. (�(u))u∈U∗ is the unique solution of the equation

x = B̃x + C�(0). (29)

The unique solution of equation (29) gives the correlation function �(k) for k ∈ U ∗ =
(Br∗(0) ∩ Z

m)\{0}, if �(0) is known. Note that the quantities B̃, C, r∗, U ∗ can be obtained
from the quantities H,W,A

f
w that define f . Then, as a consequence of lemma 3.3, it is

possible to calculate �(k) for all k ∈ Z
m, using equation (21). The only remaining and

difficult problem is the determination of �(0), which involves the determination of the limits
1

vol(PC(R))

∑
x∈PC(R)∩Z

m g(x)h(x) for g, h ∈ ker(f ), and depends on the particular case under
consideration.

Remarks

(i) As a consequence of the fact that B̃ is a contraction, the solution of equation (29) can be
obtained by iterating the map x �→ B̃x + C�(0). Observe that the size of matrix B̃ in
equation (29) equals |ker(f )|2|U ∗|, and that it can become very large, even for the most
simple automatic sequences (see the next example). However, for practical purposes, it
is often possible to decrease the size of the problem by taking into account the following.
Reconsider the graph defined by the relation l ∈ M(k) with l, k ∈ U . A subset U ′ of
U defines a strongly connected component of the graph if and only if for k, l ∈ U ′ there
exists a path from l to k and a path from k to l. By Ũ we denote the union of all vertices of
the strongly connected components. If k ∈ U\Ũ , then there exist paths from k to Ũ . With
regard to the equation x∗ = B̃x∗ + C�(0), this means that �(k) is completely determined
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by certain values of �(u) with u ∈ Ũ . If xŨ , B̃Ũ , CŨ denote the restriction on Ũ , then
the solution of

xŨ = B̃Ũ xŨ + CŨ�(0) (30)

already determines all other values of �(k).
(ii) If �(0) exists, then note that it follows from equation (18), with k = 0 and w = 0, that

�(0) = 1

|det(H)|

(∑
v∈W

Av ⊗ Av

)
�(0).

This means that �(0) has to be a fixed point of the matrix 1
|det(H)|

∑
v∈W Av ⊗ Av . A

necessary condition for this is that this matrix has eigenvalue 1. This is the case, as follows
from the fact that the sum of the entries in every row is equal to 1 (as a consequence of
lemma 3.2 (i)).

Example. Consider, as a generalization of the two-dimensional Thue–Morse sequence defined
in [3], the m-dimensional Thue–Morse sequence t. It is defined for some expanding matrix
H with |det(H)| = 2 which has the property of being similar to some block-diagonal matrix
� satisfying equations (10) and (11). Let W = {0, w} be a complete digit set of H. The
decimation matrices are given by

A0 =
(

1 0
0 1

)
Aw =

(
0 1
1 0

)
,

where rows and columns correspond to the two kernel elements t, i.e., the Thue–Morse
sequence, and g, in that order. Let F(0) = (1,−1)T , where T means transpose. Then F(0)

is a fixed point of A0. Let F(x) be defined as in equation (5), then F(x) = (t (x), g(x))T .
Assuming that the limits �R(k) exist, we write �(k) = (γtt (k), γtg(k), γgt (k), γgg(k))T .

By theorem 3.4, we have to start with �(0). Since F(0) = (1,−1)T , and due to its
definition, the possible F(x)-values are given as �F(0), where � is any possible product of
the two decimation matrices A0 and Aw. Now it is easy to see that � only equals A0 or Aw.
As a consequence, one has that (t (x), g(x)) is either (1,−1) or (−1, 1). This allows us to
conclude that

γtt (0) = lim
R⇒∞

1

vol(PC(R))

∑
x∈PC(R)∩Z

m

t (x)t (x) = 1.

and that γgg(0) = 1 and γtg(0) = γgt (0) = −1. By theorem 3.4, the correlations �(k) then
exist for all k ∈ Z

m. They can be computed by first determining �(k) for k ∈ U = Br∗ ∩ Z
m,

where r∗ is as in lemma 3.3, as the unique solution of equation (29).
We will illustrate this for the two-dimensional case with H = (−1 −1

1 −1

)
and the complete

digit set W = {0, w} = {(0, 0)T , (1, 0)T }. Observe that κ(x) = H−1x and ζ(x) = 0 if
x ∈ HZ

2, and κ(x) = H−1(x −w) and ζ(x) = w if x ∈ HZ
2 +w. As the expansion constant

(w.r.t. the Euclidian norm) of H equals
√

2, then the constants α, β in lemma 3.3 are α = √
2

and β = 1. Thus we find that r∗ = (1 +
√

2)2/(
√

2 − 1) ≈ 7.2426. The number of points of
U = Br∗ ∩ Z

2 equals 169. Thus |U | = 169, and as |ker(f )| = 2, it follows that �U is a vector
with 4 × 169 = 676 components, and B is a 676 × 676-matrix. B is formed by considering
equations (19) and (20) for k ∈ U , which read here as

�(k) = 1
2 (A0 ⊗ A0 + Aw ⊗ Aw)�(H−1k) if k ∈ HZ

2

�(k) = 1
2 (A0 ⊗ Aw)�(H−1(k − w)) + 1

2 (Aw ⊗ A0)�(H−1(k + w)) if k ∈ HZ
2 + w.
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It means that the matrix B can be considered as a 169 × 169 block matrix of 4 × 4-matrices
�k,l , with k, l ∈ U . What one sees in ‘block’-row k ∈ U depends on k. If k ∈ HZ

2, then the
matrix �k,H−1k is equal to

1

2
(A0 ⊗ A0 + Aw ⊗ Aw) = R = 1

2




1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1


 ,

and all other matrices are zero.
If k ∈ HZ

2 + w, then there are two nonzero matrices, namely

�k,H−1(k−w) = 1

2
(A0 ⊗ Aw) = S = 1

2




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




and

�k,H−1(k+w) = 1

2
(Aw ⊗ A0) = T = 1

2




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 .

The 672×672-matrix B̃ and the 672×4-matrix C in equation (29) are then the corresponding
top-left submatrix of B and the matrix formed by the last four columns up to row 672 of B.

However, referring to remark 1, less values of �(k) need to be known in order to compute
the rest of them. We consider the directed graph G for this particular example. A vertex
k ∈ U ∩ HZ

2 has one incoming edge that is connected with the vertex H−1k. Each vertex
k ∈ U ∩ (HZ

2 + w) has two incoming edges that connect it with the vertices H−1(k + w) and
H−1(k−w). Inspection of this graph shows that there are two strongly connected components:
{(0, 0)T } and {(1, 0)T , (0, 1)T , (−1, 0)T , (0,−1)T , (1, 1)T , (−1,−1)T }. The union of these
strongly connected components forms the set Ũ in remark 1 and consists of the points

ũ1 = (1, 0)T ũ2 = (0, 1)T ũ3 = (−1, 0)T ũ4 = (0,−1)T

ũ5 = (1, 1)T ũ6 = (−1,−1)T ũ7 = (0, 0)T .

It means that, for l /∈ Ũ , there is no path in the graph G that starts in l and ends in Ũ . Or: �(l)

for l /∈ Ũ is determined from the values of �(k), k ∈ Ũ . Thus we find as the matrix BŨ (rows
and columns ordered according to ũ1, ũ2, . . .):

BŨ =
(

B̃Ũ CŨ

0 AŨ

)
=




0 0 0 0 0 T S

S 0 0 T 0 0 0
0 0 0 0 S 0 T

0 S T 0 0 0 0
0 0 0 R 0 0 0
0 R 0 0 0 0 0
0 0 0 0 0 0 R




.

The simplified equation (30), i.e., xŨ = B̃Ũ x + CŨ�(0), can be solved because �(0) =
(1,−1,−1, 1)T . This ultimately yields

�((0, 0)T ) = (1 −1 −1 1)T

�((1, 0)T ) = (−0.6 0.6 0.6 −0.6)T
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�((0, 1)T ) = (0.2 −0.2 −0.2 0.2)T

�((−1, 0)T ) = (−0.6 0.6 0.6 −0.6)T

�((0,−1)T ) = (0.2 −0.2 −0.2 0.2)T

�((1, 1)T ) = (0.2 −0.2 −0.2 0.2)T

�((−1,−1)T ) = (0.2 −0.2 −0.2 0.2)T .

Using these values, all the remaining values �(k) can be computed.
The next theorem shows that in certain cases it is not necessary to consider �(0) for all

elements of the kernel ker(f ) of f .
Let f be (H,W)-automatic. A subset S ⊆ ker(f ) is called a sink (of f ) if

(i) ∂w(S) ⊆ S for all w ∈ W , i.e., S is a decimation invariant set.
(ii) For all h ∈ ker(f ) there exist n ∈ N and ω0, . . . , ωn ∈ W such that ∂ω0 ◦ · · · ◦ ∂ωn

(h) ∈ S.

Theorem 3.6. Let f be H-automatic, S ⊆ ker(f ) be a sink and FS = (h)h∈S . If

�(FS)(0) = lim
R⇒∞

�(FS)R(0)

exists, then

�(F)(0) = lim
R⇒∞

�(F)R(0)

exists.

Proof. By equation (26) one has for k = 0 and w = 0

�R(F)(0) = 1

|det(H)|

(∑
v∈W

Av ⊗ Av

)
�R/c(F)(0) + ε(R).

If one sets ρR(0) = (�R(0)(g, h))(g,h)�∈S×S and σR(0) = (�R(0)(g, h))(g,h)∈S×S , then together
with the fact that S is a sink, the above equation can be written as(

ρR(0)

σR(0)

)
=

(
B C

0 A

)(
ρR/c(0)

σR/c(0)

)
+ ε(R).

Note that the above matrix is nonnegative and that the row sums are always equal to 1. Using
the fact that S is a sink, it follows that there exists an n0 ∈ N such that(

ρR(0)

σR(0)

)
=

(
Bn0 Cn0

0 An0

) (
ρR/cn0 (0)

σR/cn0 (0)

)
+ εn0(R),

such that each row of the matrix Cn0 contains at least one nonzero element. This shows that
the row sums of the matrix Bn0 are always less than 1. This means that B is a contraction.
Since lim σR(0) exists, it follows from theorem 3.7 that lim ρR(0) exists and therefore the limit
of �R(0), i.e., �(0), exists. �

We conclude with some additional examples. The expanding map H is supposed to have
|det(H)| = 2 and to be similar to a block matrix �, see equations (10), (11). Moreover, we
assume that W = {0, w} is a complete digit set of H. As it was done in [3] for dimension 2 it is
possible to define the higher dimensional analogues of the paper folding and the Rudin–Shapiro
sequence with values ±1.

Paper folding sequence. Define p(0) = 1 and recursively define p(x) for x ∈ Z
m by setting

p(H 2x) = 1 p(Hx + w) = p(x) p(H 2x + Hw) = −1.
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Then the kernel consists of p, g : g(x) = p(Hx) and the constant sequences 1 and −1
(1 denoting that all elements of Z

2 map into 1). Moreover, the subset S = {±1} is a sink of
the kernel for which �(FS)(0) exists. Therefore, by theorem 3.6, �(0) exists which implies
that �(k) exists for all k ∈ Z

m.

Rudin–Shapiro sequence. Set r(0) = 1 and recursively define r(x) by setting

r(Hx) = r(x) r(H 2x + w) = r(x) r(H 2x + Hw + w) = −r(Hx + w).

Using these defining relations, one obtains ker(r) = {r, g,−r,−g}, where g(x) = r(Hx +
w). The relevant components of Fr ⊗ Fr are the sequences r2 = (r(x)2)x∈Z

m, rg =
(r(x)g(x))x∈Z

m , and g2 = (g(x)g(x))x∈Z
m . Note that r2 and g2 are the constant sequence 1.

It follows that γxx(0) = 1 and γx(−x) = −1 for x ∈ ker(r). Since ∂0(rg) = r2 = 1 and
∂w(rg) = −gg = −1, i.e., rg(x) = 1 if x ∈ HZ

m and rg(x) = −1 if x ∈ HZ
m + w, it

follows that

γrg(0) = lim
R⇒∞

1

vol(PC(R))

∑
x∈PC(R)∩Z

m

r(x)g(x) = 0.

For the same reasons γxy(0) = 0 for all x, y ∈ ker(r), x �= y. Thus the limits defining �(0)

all exist, which implies the existence of �(k) for all k ∈ Z
m.
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Appendix A. An analytical result

In this section, we state and prove the theorem which was used in the proofs of theorems 3.4
and 3.6.

Let X be a Banach space, i.e., a real/complex, normed, complete vector space.
Furthermore, let A : X → X be a contraction, i.e., there exists 0 � λ < 1 such that

‖Ax − Ay‖ � λ‖x − y‖
for all x, y ∈ X. Note that, due to Banach’s fixed point theorem, there exists a unique x∗ ∈ X

with Ax∗ = x∗.
Let f : R

n
�0 → X be a function which is bounded on every bounded subset of R

n
�0 and

let c = (c1, . . . , cn) ∈ R
n such that ci > 1 for i = 1, . . . , n. Moreover, assume that f satisfies

f(R) = Af

(
R

c

)
+ ε(R), (A.1)

for all R = (R1, . . . , Rn), Ri � 0, i = 1, . . . , n, where R/c = (R1/c1, . . . , Rn/cn), and
assume that

lim
R⇒∞

ε(R) = 0,

where R ⇒ ∞ means that every component tends to infinity. Due to the boundedness of f on
bounded subsets and the limit condition on ε, it follows that ε is bounded, i.e.,

|ε(R)| � K1.

We also agree that for s ∈ N the notion cs means
(
cs

1, . . . , c
s
n

)
.
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Theorem 3.7. Under the above assumptions

lim
R⇒∞

f(R) = x∗.

Proof. Define g(R) = f(R) − x∗, then an easy computation shows that

g(R) = Bg

(
R

c

)
+ ε(R), (A.2)

with B : X → X defined as Bx = A(x + x∗) − x∗. Note further that B is a contraction
with ‖Bx − By‖ � λ‖x − y‖ with the unique fixed point 0. Thus, the assertion is proved, if
limR⇒∞ g(R) = 0 is established.

A repeated application of equation (A.2) in connection with the triangle inequality leads
to

‖g(R)‖ � λs+1

∥∥∥∥g

(
R

cs+1

)∥∥∥∥ +
s∑

j=0

λj

∥∥∥∥ε

(
R

cj

)∥∥∥∥ (A.3)

for all R and all s ∈ N.
Let δ > 0 be given. Since limR⇒∞ ε(R) = 0, there exists an M1 > 1 such that

|ε(R)| <
δ

3K2
(A.4)

for all R > M1, i.e., Ri > M1 for i = 1, . . . , n, and where K2 = ∑∞
j=0 λj .

Set c+ = max{ci | i = 1, . . . , n} and for

R > M
1+ log c+

log M1
1 (A.5)

set

s(R) =
⌈

max

{
log Ri

log ci

∣∣∣∣ i = 1, . . . , n

}⌉

t (R) =
⌊

min

{
log Ri − log M1

log ci

∣∣∣∣ i = 1, . . . , n

}⌋
,

(A.6)

where �u� is the smallest integer greater than or equal to u, and �u� is the largest integer
smaller than or equal to u.

Then one has s(R) > t(R) � 1, the rightmost inequality being a consequence of
equation (A.5). According to the definition of s(R), one has

0 � R

cs(R)+1
� 1

for all R satisfying equation (A.5). Combined with the fact that g is bounded on bounded
subsets, it follows that

λs(R)+1

∥∥∥∥g

(
R

cs(R)+1

)∥∥∥∥ � λs(R)+1K3 (A.7)

for these R and an appropriate K3 > 0.
The sum in equation (A.3) is split into two parts, namely

s(R)∑
j=t (R)+1

λj

∥∥∥∥ε

(
R

cj

)∥∥∥∥ ,
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using the fact that |ε(R)| � K1 this sum becomes

K1

s(R)∑
j=t (R)+1

λj � K1K2λ
t(R)+1, (A.8)

due to the definition of K2 above.
The second part, namely

t (R)∑
j=0

λj

∥∥∥∥ε

(
R

cj

)∥∥∥∥ ,

can be bounded as follows. Since R satisfies inequality (A.5) and due to the definition, see
(A.6), of t (R), one easily sees that

R

cj
> M1

holds for all j = 0, . . . , t (R). Therefore, according to equation (A.4) and the definition of
K2, one has

t (R)∑
j=0

λj

∥∥∥∥ε

(
R

cj

)∥∥∥∥ � δ

3K2

t (R)∑
j=0

λj � δ

3
. (A.9)

Putting equations (A.7), (A.8) and (A.9) together, one obtains

‖g(R)‖ � λs(R)+1K3 + λt(R)+1K1K2 +
δ

3

for all R satisfying (A.5). Due to the definition of s(R) and t (R) and the fact that 0 � λ < 1,
there exists M2 such that for all R > M2

|λs(R)+1K3| <
δ

3
and |λt(R)+1K1K2| <

δ

3
.

Setting M = max
{
M

1+ log c+

log M1
1 ,M2

}
, one has

‖g(R)‖ < δ

for all R > M . This completes the proof. �

Appendix B. A geometric property

Let H be an expanding m × m integer matrix for which there exists a matrix P ∈ R
m×m such

that � = P −1HP is a proper block-diagonal matrix of the form

� = P −1HP = diag(λ1, . . . , λs,�1, . . . , �t ),

as described in the introduction (equations (10) and (11)). Let R be an (s + t)-vector with
positive real entries. Then the cylinder C(R) ⊂ R

m is defined as the set

C(R) = {(x1, . . . , xs) | |xi | � Ri, i = 1, . . . , s}
×{

(x1, y1, . . . , xt , yt )
∣∣ x2

j + y2
j � R2

s+j , j = 1, . . . , t
}
. (B.1)

Using this notation one has

�−1(C(R)) = C(R/c), (B.2)
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where R/c = (R1/c1, . . . , Rs+t /cs+t ) with ci = |λi | for i = 1, . . . , s and cs+j = |det(�j )| 1
2

for j = 1, . . . , t . The volume of the cylinder is given by

vol(C(R)) = 2sπ t

s∏
i=1

Ri

t∏
j=1

R2
s+j . (B.3)

We will need to consider limits where vol(C(R)) → ∞ by letting the Ri → ∞ simultaneously,
which we denote by R ⇒ ∞. If E : R

s+t
�0 → C is such that limR⇒∞

E(R)

vol(C(R))
= 0, then we

write

oC(R) (B.4)

for E.

Theorem 3.8. For R = (R1, R2, . . . , Rs+t ) ∈ R
s+t
�0

|P −1(Zm) ∩ C(R)| = |det(P )| vol(C(R)) + oC(R). (B.5)

Proof. The proof runs along similar lines as the proof of Satz 1 in chapter 2 of [13],
so we only sketch it. Let P −1 = [v1, . . . , vm], where the vi are column vectors. For
k = (k1, . . . , km) ∈ Z

m, we denote an elementary cell Z(k) as the set

Z(k) =
{

m∑
i=1

(ki + ti)vi

∣∣∣∣∣ 0 � tj � 1, j = 1, . . . , m

}

and
∑m

i=1 kivi is called the lower left corner of Z(k). With P we denote the polytope that
consists of all elementary cells Z(k) whose lower left corner belongs to C(R). Since the
diameter of an elementary cell is finite, there exists a constant c > 0 such that

C(R1 − c, . . . , Rs+t − c) ⊆ P ⊆ C(R1 + c, . . . , Rs+t + c).

In terms of volumes this yields

vol(C(R1 − c, . . . , Rs+t − c)) � vol(P) � vol(C(R1 + c, . . . , Rs+t + c)).

Using the fact that vol(P) = |det(P −1)||P −1(Zm) ∩ C(R)| one obtains

|det(P )| (vol(C(R1 − c, . . . , Rs+t − c)) − vol(C(R)))

� |P −1(Zm) ∩ C(R)| − |det(P )| vol(C(R))

� |det(P )| (vol(C(R1 + c, . . . , Rs+t + c)) − vol(C(R))).

Since vol(C(R)) is a polynomial in the variables Ri see equation (B.3), it follows that the
differences on the left- and right-hand side of the inequality are oC(R). �

Corollary 3.9. When PC(R) denotes the transformation of the cylinder C(R) under P, then
equation (B.5) is equivalent to

|Zm ∩ PC(R)| = vol(PC(R)) + oC(R).

An important consequence of the above theorem is a kind of summation formula. As
in appendix A, X denotes a Banach space. To state the summation formula we assume that
F : Z

m → X is any bounded function, i.e., ‖F(x)‖ � M for all x ∈ Z
m. Furthermore, let W

be any residue set for H.

Lemma 3.10. Let R ∈ R
s+t
+ then∑

x∈PC(R)∩Z
m

F (x) =
∑
v∈W

∑
x∈PC(R/c)∩Z

m

F (Hx + v) + oC(R),

where R/c is as in equation (B.2).



10898 A Barbé and F von Haeseler

Proof. Note that PC(R/c) ∩ Z
m ⊂ PC(R) ∩ Z

m. Therefore, there are two possibilities
for a difference in the left and in the right sum. The first way is that Hx + v does not
belong to PC(R) ∩ Z

m for an x ∈ PC(R/c) ∩ Z
m and a v ∈ V , the second way is that for

x ∈ PC(R) ∩ Z
m there exists no y ∈ PC(R/c) ∩ Z

m and no v ∈ V such that x = Hy + v.
Since the diameter of the residue set W is finite, these errors can only occur in a proximity of
the boundary of C(R). In other words, there exists c > 0 such that∥∥∥∥∥∥

∑
x∈PC(R)∩Z

m

F (x) −
∑
v∈W

∑
x∈PC(R/c)∩Z

m

F (Hx + w)

∥∥∥∥∥∥
� M‖(PC(R1 + c, . . . , Rs+t + c)\PC(R1 − c, . . . , Rs+t − c)) ∩ Z

m‖.
By using corollary 3.9, one obtains the result. �
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